Calculating Elasticities

Philip A. Viton

April 17, 2012
Suppose we have a demand function

\[x_1 = x_1^*(p_1, p_2, M, \ldots) \]

where

- \(p_1 \) = own-price of \(x_1 \).
- \(p_2 \) = cross prices (prices of other goods influencing the demand for good \(x_1 \)).
- \(M \) = income.
Suppose that we observe current \((base)\) values for the independent variables:

\[
p_1 = p_1^0 \\
p_2 = p_2^0 \\
M = M^0
\]

And suppose we want to calculate the elasticity of demand with respect to one of the independent variables, call it \(z\). That is, we want:

\[
\eta = \frac{\% \text{ change in quantity demanded}}{\% \text{ change in } z}
\]
There are several ways to calculate elasticities, including:

- The arc elasticity of demand.
- The point elasticity of demand.
- The mid-point-base elasticity of demand.

This note reviews calculation techniques for each of these.
Calculating the Arc Elasticity

Calculating arc elasticities involves the following steps:

1. Plug the base data into the demand function and calculate the quantity demanded x_1^0.
2. Vary the quantity of interest z by a small amount Δz. So we are looking at $z^1 = z^0 + \Delta z$.
3. Plug in the new data into the demand function and calculate the new demand x_1^1 in that setting.
4. Calculate the change in demand $\Delta x_1 = x_1^1 - x_1^0$.
5. The arc elasticity of demand is given by:

\[\eta = \frac{\Delta x_1}{\Delta z} \frac{z^0}{x_1^0} \]
Examples – Setting

Suppose the demand for a good x_1 is

$$x_1 = 12 - 0.5p_1 + 0.9p_2 + 0.0001M$$

where:

- p_1 is the own-price of x_1 ($\$$)
- p_2 is the price of some other good (a cross-price) ($\$$)
- M is income ($\$$)

And suppose we have, for our base data

- $p_1^0 = 4$
- $p_2^0 = 8$
- $M^0 = 50,000$
Own-Price Arc-Elasticity of Demand : Example 1

In this case the quantity of interest is p_1: we are inquiring about the responsiveness of demand to changes in the own-price. (In other words, in terms of the general notation, $z \equiv p_1$).

1. Plug in the base data and calculate the demand:

$$x_1^0 = 12 - (0.5 \times 4) + (0.9 \times 8) + (0.0001 \times 50000)$$

$$= 12 - 2 + 7.2 + 5$$

$$= 22.2$$

2. Vary p_1 by a small amount, say $\Delta p_1 = +0.01$. So we are now looking at the situation where the own-price is $p_1^1 = p_1^0 + \Delta p_1 = 4.01$.

Philip A. Viton

CRP 781 — Elasticity

April 17, 2012 7 / 1
1. Calculate the new quantity demanded:

\[x_1^1 = 12 - (0.5 \times 4.01) + (0.9 \times 8) + (0.0001 \times 50000) \]
\[= 22.195 \]

2. Calculate \(\Delta x_1 = x_1^1 - x_1^0 = 22.195 - 22.2 = -0.005 \).

3. Elasticity:

\[\eta = \frac{-0.005}{0.01} \frac{4}{22.2} = 0.09009 \]
Question 1: What About the Order?

- When we compute Δx_1, why do we take it to be $\Delta x_1 = x^1 - x^0$ (and not the other way round)?
- Answer: we need to compute Δx_1 and Δp_1 in the same order from the data.
- We have:
 - Original data: quantity = x_1^0, price = p_1^0
 - New data: quantity = x_1^1, price = $p_1^0 + \Delta p_1$

 - In our calculation, we subtracted the new data from the old: this gave $(p_1^0 + \Delta p_1) - p_1^0 = \Delta p_1$ for the change in price and $x^1 - x^0 = \Delta x_1$ for the change in quantity.

 - If you wanted to do it the other way round, you could take $\Delta x_1 = x^0 - x^1$ but then you would have to take $\Delta p_1 = p_1^0 - (p_1^0 + \Delta p_1) = -\Delta p_1$: note the minus sign.
Cross-Price Arc-Elasticity of Demand: Example

In this case the quantity of interest is \(p_2 \). (So \(z \equiv p_2 \)). We proceed as before:

1. Plug in the base data. We’ve already done this, and found that \(x_1^0 = 22.2 \).

2. Vary \(p_2 \) by a small amount, say \(\Delta p_2 = -0.02 \). So we will be working with a cross price of \(p_2^1 = p_2^0 + \Delta p_2 = 7.98 \).

3. Plug in, to find the new quantity demanded:

\[
\begin{align*}
 x_1^1 &= 12 - (0.5 \times 4) + (0.9 \times 7.98) + (0.0001 \times 50000) \\
 &= 22.182
\end{align*}
\]

4. Compute \(\Delta x_1 = x_1^1 - x_1^0 = 22.182 - 22.2 = -0.018 \).

5. Elasticity:

\[
\eta = \frac{-0.018}{-0.02} \frac{8}{22.2} = 0.32432
\]
Income Arc-Elasticity of Demand: Example

In this case the quantity of interest is M : we ask how responsive the demand for x_1 is to changes in income. (So $z \equiv M$).

1. Plug in the base data. We’ve already found that $x_1^0 = 22.2$.
2. Vary M by a small amount, say $+3.00$. So we will be working with $M^1 = M^0 + \Delta M = 50003$.
3. Plug in, to find the new quantity demanded:

$$x_1^1 = 12 - (0.5 \times 4) + (0.9 \times 8) + (0.0001 \times 50003)$$
$$= 22.2003$$

4. Compute $\Delta x = x_1^1 - x_1^0 = 22.2003 - 22.2 = 0.0003$

Compute the elasticity:

$$\eta = \frac{0.0003 \times 50000}{3.00 \times 22.2} = 0.2252252$$
Question 2: What About the Small Change?

- In the examples, could we have chosen another “small change”?
 - Yes, as long as it’s small relative to the base situation, any small change will do.

- But won’t that give us a different answer?
 - Yes it may (if demand is non-linear), but not by much (as long as the changes are really small).

- Aren’t two answers a problem?
 - Not really: what’s happening is that we are using $\Delta x / \Delta z$ (where z is the quantity of interest) to approximate the slope of the demand function at a point. We can live with small differences (approximation errors). If you’re really concerned, consider computing a point elasticity instead, using calculus.
A Different Small Change

Let’s re-calculate the income elasticity of demand with a different small change.

1. We already know that demand at the base point is \(x_1^0 = 22.2 \).
2. Let’s vary income by -1.00, so income = 49,999.
3. Plug in:

\[
x_1^1 = 12 - (0.5 \times 4) + (0.9 \times 8) + (0.0001 \times 49999) \\
= 22.1999
\]

4. Compute \(\Delta x_1 = 22.1999 - 22.2 = -0.0001 \)
5. Elasticity:

\[
\eta = \frac{-0.0001 \times 50000}{-1.00 \times 22.2} \\
= 0.2252252
\]

Note that since demand is linear we get the same answer as before.
Mid-Point Base

- In their book, Call and Holahan recommend using the “mid-point base” instead of the base point as we have done.
- The mid-point base calculation computes the elasticity as:

\[\eta = \frac{\Delta x}{\Delta z} \frac{(z^0 + z^1)/2}{(x^0 + x^1)/2} \]

- One reason favoring the mid-point base is that it is symmetric: see next examples. This is not so with the arc-elasticity.
- You need to remember that all these “finite change” methods are just approximations to the point elasticity, which involves calculus.
We revisit the own-price elasticity of demand calculation, this time using a mid-point base computation.

1. At the base setting we have $x_1^0 = 22.2$.
2. Vary p_1 by $+0.01$.
3. Plug in. We’ve already seen that $x_1^1 = 22.195$.
4. $\Delta x = 22.195 - 22.2 = -0.005$.
5. Mid-point base own-price elasticity:

$$
\eta = \frac{-0.005 \cdot (4.00 + 4.01)/2}{0.01 \cdot (22.2 + 22.195)/2}
= \frac{-0.005 \cdot 4.005}{0.01 \cdot 22.1975}
= -0.09021286
$$
Mid-Point Base: The Other Way Round

We now take the original setting to be $p_1^0 = 4$, $p_2^0 = 8.01$, $M^0 = 50000$. (In other words, our new starting point is the previous final point).

1. At (this) original setting we have already seen that $x_1^0 = 22.195$
2. Vary p_1 by -0.01, so we will be working with $p_1 = 4$
3. With the new p_1 we have already calculated that $x_1^1 = 22.2$
4. Compute $\Delta x = x_1^1 - x_1^0 = 22.2 - 22.195 = 0.005$
5. Mid-point base own-price elasticity:

$$\eta = \frac{0.005 \ (4.00 + 4.01)/2}{-0.01 \ (22.2 + 22.195)/2}$$
$$= -0.09021286$$

as before. This illustrates that the mid-point base computation is symmetric.
Own-Price Point-Elasticity

The point elasticity of demand is defined as:

\[\eta = \frac{\partial x^*}{\partial z} \frac{z^0}{x^0} \]

where \(z \) is the quantity of interest, and the first term is the (partial) derivative of demand with respect to this quantity.

If you remember your calculus, this may be easier to calculate:

1. Plug in the data and find \(x^0 \), the quantity demand at the original point.
2. Compute the derivative with respect to the quantity of interest.
3. Compute the elasticity using the formula.
Own-Price Point-Elasticity: Example

We compute the own-price point elasticity of demand, recalling that:

\[x_1 = 12 - 0.5p_1 + 0.9p_2 + 0.0001M \]

1. At the base point, \(p_1^0 = 4, \ p_2^0 = 8, \ M^0 = 50,000 \) we have already found that \(x_1^0 = 22.2 \).
2. The derivative of the demand function with respect to \(p_1 \) is \(-0.5\).
3. The point elasticity is:

\[\eta = -0.5 \frac{4}{22.2} \]

\[= -0.09009 \]

Note that because demand is linear, this agrees with the arc-elasticity (but not with the mid-point base case, though they’re not far apart).
The income *point* elasticity of demand:

1. At the base point $x_1^0 = 22.2$.
2. The derivative of the demand function with respect to income is 0.0001.
3. The point elasticity is:

$$ \eta = 0.0001 \frac{50000}{22.2} $$

$$ = 0.225\ 225\ 2 $$
What Should I Do?

All these ways of computing elasticity — which should I use (in an exam, for example)?

- The quick answer is that you can use any of them.
- If you’re confident of your calculus, then it’s probably best to compute the point elasticity: that’s the one you’ll usually find in the literature.
- Otherwise, it’s your choice. Many people find the arc elasticity slightly less work than the mid-point base calculation.
- But remember, all the finite change methods are just approximations to the calculus-based point elasticity.